elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,下面记录中常用的知识点。

1.索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。

mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引(是否参与搜索),默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

索引库的CRUD

索引库的增删改查

创建索引库

  • 请求方式:PUT
  • 请求路径:/索引库名
  • 请求参数:mapping映射

格式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
// ...略
    }
  }
}

注意:ES查询时同时查询多个字段会影响性能,可以使用

"copy_to" : "all" 将所需字段映射到”all”(”all”为自定义字段),需要查询时查询该字段即可

例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
PUT /hotel
{
"mappings": {
"properties": {
"id":{
"type": "keyword"
},
"name":{
"type": "text",
"analyzer": "ik_max_word",
"copy_to": "all"
},
"city":{
"type": "keyword",
"copy_to": "all"
},
"all":{
"type": "text",
"analyzer": "ik_max_word"
}
}
}
}

修改索引库

索引库一旦创建,无法修改mapping,但是却允许添加新的字段到mapping中

  • 请求方式:PUT
  • 请求路径:/索引库名/_mapping

语法说明

1
2
3
4
5
6
7
8
PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}

查询、删除索引库

1
2
GET /索引库名
DELETE /索引库名

2.文档操作

文档就类似于数据库表中的数据

ES使用RestFull风格

新增文档

  • 请求方式:Post
  • 请求路径:/索引库名/doc/文档id

语法:

1
2
3
4
5
6
7
8
9
10
POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
// ...
}

修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档

    PUT /{索引库名}/_doc/文档id

    语法同新增文档

  • 增量修改:修改文档中的部分字段

    1
    2
    3
    4
    5
    6
    POST /{索引库名}/_update/文档id
    {
        "doc": {
    "字段名": "新的值",
    }
    }

查询、删除文档

GET /{索引库名}/_doc/文档id

DELETE /{索引库名}/_doc/文档id

3.DSL查询文档

查询分类

基本语法:

1
2
3
4
5
6
7
8
GET /索引库名称/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}
  • 查询所有:查询出所有数据,例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match (指定一个字段)
    • multi_match (指定多个字段)
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range (范围查询)
    • term (精确查询,不分词)
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance (附近查询)
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

全文检索查询

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

1
2
3
4
5
6
7
8
GET /indexName/_search
{
"query": {
"match": {
"FIELD": "TEXT"
}
}
}

mulit_match语法如下:

1
2
3
4
5
6
7
8
9
GET /indexName/_search
{
"query": {
"multi_match": {
"query": "TEXT",
"fields": ["FIELD1", " FIELD12"]
}
}
}

精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

term查询

1
2
3
4
5
6
7
8
9
10
11
// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

range查询

1
2
3
4
5
6
7
8
9
10
11
12
// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

地理坐标查询

常用有:

  • geo_distance (附近查询)

  • geo_bounding_box (矩形范围查询)

附近查询

1
2
3
4
5
6
7
8
9
10
// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

复合查询

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列,而某些业务需求中谁掏的钱多排名就越靠前,可以使用复合查询做一定的干预。

算分函数查询

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": { .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
"boost_mode": "sum" // 加权模式,求和
    }
  }
}

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果

布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

语法示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
GET /hotel/_search
{
"query": {
"bool": {
"must": [
{"term": {"city": "上海" }}
],
"should": [
{"term": {"brand": "皇冠假日" }},
{"term": {"brand": "华美达" }}
],
"must_not": [
{ "range": { "price": { "lte": 500 } }}
],
"filter": [
{ "range": {"score": { "gte": 45 } }}
]
}
}
}

4.搜索结果处理

排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

1
2
3
4
5
6
7
8
9
10
11
GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

地理坐标排序

地理坐标排序略有不同。

语法说明

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序

分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

基本的分页

分页的基本语法如下:

1
2
3
4
5
6
7
8
9
10
11
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

深度分页问题

  • from + size

    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

高亮

高亮的语法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match = false